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Figure 1. Given an input text prompt, our method synthesizes a stereo pair of left and right images. We use the generated left image
as input to StereoDiffusion [46] and 3D Photography [39] to generate the right image. Both StereoDiffusion and 3D Photography use
depth-based warping to transfer content from the input to the novel view. As such, they often struggle to create appropriate parallax effects
for objects with continuously varying depth, as indicated by the cyan arrows. Moreover, since StereoDiffusion performs depth warping
in the latent space, the warping is often not pixel-perfect, resulting in objectionable artifacts, as indicated by the yellow arrows. Finally,
3D Photography frequently struggles to reconstruct occluded regions (see the yellow arrow). Our approach, however, produces consistent,
high-quality stereo images with wide baselines

Abstract

In this paper, we propose a novel diffusion-based approach
to generate stereo images given a text prompt. Since stereo
image datasets with large baselines are scarce, training a
diffusion model from scratch is not feasible. Therefore, we
propose leveraging the strong priors learned by Stable Dif-
fusion and fine-tuning it on stereo image datasets to adapt
it to the task of stereo generation. To improve stereo con-
sistency and text-to-image alignment, we further tune the
model using prompt alignment and our proposed stereo
consistency reward functions. Comprehensive experiments
demonstrate the superiority of our approach in generating
high-quality stereo images across diverse scenarios, outper-
forming existing methods.

1. Introduction
With the rise in popularity of VR headsets (e.g., Meta
Quest) and light field displays (e.g., Lume Pad), generat-
ing suitable content for these devices is becoming increas-
ingly important. Although powerful diffusion models, such
as Stable Diffusion [12, 34], allow the average user to pro-
duce creative images from text prompts, generating stereo
images remains a major challenge.

One potential approach for generating stereo images is
to first produce a single image using an existing diffu-
sion model and then apply a single-image view synthesis
method [17, 33, 39, 41, 44, 49] to reconstruct the other view.
Most of these techniques [17, 33, 39, 49], however, gener-
ate novel views by warping the input image using monocu-
lar depth and inpainting the occluded regions. While these
methods produce reasonable results with a small baseline,
their results for larger baselines—this paper’s focus—often
contain objectionable artifacts. Specifically, depth-based
warping often produces incorrect parallax effect for objects
with continuous varying depth (see Fig. 1). Additionally,
these methods usually reconstruct the occluded regions in a
plausible but contextually inaccurate manner.

Recently, Wang et al. [46] tackle the problem of stereo
image generation using a pre-trained Stable Diffusion
model. Specifically, they follow the pipeline of previously
mentioned methods, reconstructing stereo images through
depth-based warping in the latent space of the diffusion
model. As a result, they inherit the limitations of single-
image view synthesis techniques. Furthermore, due to op-
erating in the latent space, their warping is not pixel-perfect.

In this paper, we propose a novel diffusion-based ap-
proach for generating stereo image pairs from text prompts.
Since stereo image datasets with large baselines are scarce,



we supplement the existing data [43] by creating additional
data using the multi-view MVImgNet [54] dataset. Specifi-
cally, for each scene, we reconstruct it in 3D by optimizing
a 3D Gaussian Splatting representation [15] on the input
images. We then rendering several stereo pairs from the op-
timized representation for each scene and include them as
training data.

Training a diffusion model from scratch is challenging
due to the limited number of scenes in our dataset; the
model can easily overfit and fail to generalize well. To ad-
dress this issue, we leverage the strong priors of the pre-
trained Stable Diffusion [12, 34] and fine-tune it on our
data, adapting it to the stereo generation task while retain-
ing its generalization capabilities. However, the diffusion
model outputs a single RGB image, while we are dealing
with stereo image pairs. Therefore, we propose to vertically
stack the left and right images to form a single RGB image,
matching the output format of the diffusion model.

This fine-tuning process adapts the diffusion model to
produce stereo images, but the tuned model suffers from
two issues: 1) the generated stereo pairs are often not ge-
ometrically consistent, as consistency is not enforced dur-
ing the initial fine-tuning; and 2) while the tuned model
can generate stereo images for test prompts, the generated
content is often not fully aligned with the text. To address
these issues, we propose using the approach by Prabhudesai
et al. [30] (AlignProp), which enables fine-tuning of diffu-
sion models according to arbitrary but differentiable reward
functions. Specifically, we introduce a stereo consistency
reward function to improve geometric consistency, and use
human preference score v2 (HPSv2) [50] to enhance text-
to-image alignment.

Experimental results demonstrate that our approach pro-
duces consistent, high-quality stereo images that outper-
form existing methods. In summary, our paper makes the
following key contributions:

• We propose fine-tuning Stable Diffusion on stereo im-
ages, adapting the model to generate stereo pairs while
retaining its generalization capabilities.

• To improve geometric consistency and text-to-image
alignment, we further tune the model using prompt align-
ment and our proposed stereo consistency rewards.

• We demonstrate that our approach produces stereo im-
ages with improved consistency and quality compared to
existing methods.

2. Related Work

In this section, we review closely related work, focusing
on 3D generation and single-image novel view synthesis.
Additionally, we discuss approaches that fine-tune diffusion
models based on specific reward functions, as we leverage
this technique to enhance our stereo diffusion model.

2.1. 3D Generation

With recent advances in generative methods and 3D scene
representations, such as neural radiance fields (NeRF) [26]
and 3D Gaussian Splatting [15], there has been growing in-
terest in 3D generation. One group of methods [2, 8, 11, 27,
35] integrates NeRF into generative adversarial networks
(GANs) [9] to synthesize 3D content. While these methods
produce high-quality results, they are limited to generating
single objects.

Another category of methods leverages powerful 2D dif-
fusion models [12, 34] as priors to reconstruct 3D scenes
or objects. Specifically, DreamFusion [29] and its follow-
up works [25, 38, 42, 48] use score distillation sampling
(SDS) to optimize 3D representations like NeRF and 3D
Gaussian Splatting. However, these methods often yield
oversmoothed results due to SDS loss limitations, and their
optimization process is computationally intensive.

Closer to our approach, some methods [21, 51] fine-
tune Stable Diffusion [34] on large synthetic 3D object
datasets [5] to produce multi-view images, which are then
passed to a transformer network to generate the final 3D
representation. Xie et al. [51] further refine the diffusion
model using reinforcement learning to enhance consistency
across generated multiview results. However, these meth-
ods are primarily focused on generating individual objects.
In contrast, we target stereo generation for general scenes.

2.2. Single-Image Novel View Synthesis

Given a single image, a large number of methods [22, 31,
39, 44, 45] synthesize novel views by estimating inter-
mediate 3D representations, such as layered depth images
(LDI) [37] and multi-plane images (MPI) [56]. However,
these methods are generally limited to narrow viewpoint
changes and struggle to generate images with significant de-
viations from the input.

A group of recent techniques [3, 28, 53, 55] leverage
powerful diffusion models [12, 34] for this task. These
methods progressively project images into the 3D scene us-
ing estimated monocular depth and inpaint occluded regions
with diffusion inpainting. However, depth-based warping
often produces incorrect parallax, particularly for objects
with continuous varying depth. Additionally, while inpaint-
ing models can fill in occluded regions with plausible con-
tent, they frequently lack contextual accuracy. Moreover,
Wang et al. [46] (StereoDiffusion) focus specifically on
stereo generation using depth-based warping in the latent
space of Stable Diffusion [34]. However, in addition to the
aforementioned issues, warping in the latent space also re-
sults in less precise pixel alignment.

2.3. Tuning Diffusion with Rewards

Reward fine-tuning has emerged as a promising approach to
refining diffusion models, enabling the production of out-



puts that align with specific objectives. Inspired largely by
reinforcement learning (RL), this approach has become cen-
tral to applications requiring nuanced control over gener-
ation quality. For example, Lee et al. [18] apply reward-
weighted regression on a curated dataset to address mis-
alignments in factors such as object count, color consis-
tency, and background quality. Methods like DDPO [1]
and DPOK [7] use policy gradients in multi-step diffusion
models [6], enhancing reward outcomes for aesthetic qual-
ity, image-text alignment, and compressibility.

In contrast to these RL-based methods, some ap-
proaches [4, 30] perform optimization by directly back-
propagating gradients from a differentiable reward function,
using gradient checkpointing [10] to do so efficiently. In
our work, we employ such techniques, particularly Align-
Prop [30], to enhance the stereo consistency and prompt
alignment of the generated results.

3. Background
In this section, we provide an overview of the concepts re-
lated to our approach: diffusion models [12, 34] and Align-
Prop [30].

3.1. Diffusion Models

Diffusion models [12] are probabilistic generative models
that have recently achieved state-of-the-art performance in
high-quality image synthesis. The process consists of a
forward and reverse diffusion phase. In the forward pro-
cess, noise is gradually added to an input image x0 over
T timesteps, producing a sequence of increasingly noisy
images x0, . . . , xT , eventually leading to a noise distribu-
tion xT . Specifically, given a random noise image with
normal distribution ϵ ∼ N (0, I), the image at time t is
obtained by adding noise to the clean image according to
xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ᾱt is derived based on the

variance at each timestep.
The reverse process aims to denoise xT back to x0 using

a learned denoising function ϵθ that takes the image at the
current step xt, and often a text prompt c, to estimate the
noise ϵ̂, i.e., ϵ̂ = ϵθ(xt, c, t). Given a set of images and
corresponding text prompts T = {(xi

0, c
i)}Ni=1, the model

is trained by optimizing the following objective:

Ld =
1

N

∑
(xi

0,c
i)∈T

∥ϵθ(
√
ᾱtx

i
0 +

√
1− ᾱtϵ, c

i, t)− ϵ∥2.

(1)
During inference, xT is initialized with Gaussian noise,

and the trained network ϵθ is used to progressively denoise
it, ultimately producing a clean image x0. Since both train-
ing and inference of diffusion models are computationally
expensive, latent diffusion models (LDM) [34] propose per-
forming the diffusion process in the latent space of a varia-

tional autoencoder (VAE) [16], significantly reducing com-
putational load. In our work, we utilize an LDM, specifi-
cally Stable Diffusion, and adapt it to stereo generation task.

3.2. AlignProp

The goal of this approach is to fine-tune a pre-trained dif-
fusion model to produce results aligned with a specific re-
ward. Unlike the objective in Eq. 1, which operates on
a single denoising step, AlignProp [30] maximizes the re-
ward based on the model’s output after multiple denoising
steps. Specifically, given a dataset of training text prompts
C = {ci}Mi=1, AlignProp optimizes the diffusion model’s
parameters to maximize the following objective function:

La = − 1

M

∑
ci∈C

R(πθ(xT , c
i)), (2)

where ci represents a training prompt and R is the reward
function, which might, for example, measure aesthetic qual-
ity or compressibility of the generated images x0. More-
over, πθ encapsulating the iterative denoising process into a
single function, i.e., x0 = πθ(xT , c).

Optimizing this objective by fully backpropagating
through all denoising steps, however, leads to mode col-
lapse. To address this issue, AlignProp proposes truncat-
ing gradient backpropagation at a random denoising step.
This adjustment enables the optimization process to adapt
the network according to the reward while avoiding mode
collapse. In our work, we use AlignProp to enhance stereo
consistency and prompt alignment in the generated results.

4. Methodology
The goal of our work is to train a diffusion model that gener-
ates consistent stereo image pairs with a large baseline from
text prompts. Our approach, dubbed Text2Stereo, adapts
the pre-trained Stable Diffusion [34] model to the stereo
generation task. In the following sections, we first discuss
our process for obtaining a dataset of stereo images and
their corresponding text prompts (Sec. 4.1). We then de-
scribe our fine-tuning process, which consists of two stages:
stereo adaptation (Sec. 4.2) and fine-tuning for consistency
enhancement (Sec. 4.3). Overview of our approach is illus-
trated in Fig. 2.

4.1. Dataset Preparation

Since the goal of our work is to generate stereo images
with a large baseline, we need a dataset of such stereo im-
age pairs for training. Unfortunately, most existing stereo
datasets are either captured with stereo cameras that have a
small baseline [14] or are synthetic [24], making them un-
suitable for our task. A notable exception is the dataset by
NeRFStereo [43], which contains 270 scenes, each with 100
large baseline stereo images (total 27,000).
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Figure 2. We show the overview of our approach comprising two stages (left and right). In the first stage, we fine-tune the pretrained Stable
Diffusion model using LoRA [13] on our stereo image dataset, with left-right images stacked vertically. In the second stage, we further
optimize our model using AlignProp [30] to enhance the stereo consistency and prompt alignment.

NeRFStereo

There are two 
wooden tables

and chairs on the 
sidewalk.

There is a statue
of a woman 

sitting on a book
shelf.

MVStereo

There is a bicycle 
that is sitting on 
the ground next 

to a bench.

There is a bed 
that is in a store 

with a pillow on it.

There are three 
orange and white

cones on the 
ground.

There are many 
pieces of wood

stacked up 
together on the 

floor.

There is a yellow 
hard hat sitting on 
a piece of paper.

There is a stuffed
cow sitting on a 

quilted bed.

Figure 3. We present example images from our dataset. In addition
to the existing stereo dataset from NeRFStereo [43], we introduce
a newly generated dataset, MVStereo. This dataset is created by
first reconstructing a 3D Gaussian splatting [15, 57] representation
from multiview images obtained from MVImgNet [54], followed
by sampling stereo images from the reconstructed model.

In our work, we supplement the NeRFStereo dataset by
creating our own stereo image dataset, coined MVStereo,
using the multi-view MVImgNet dataset [54]. Specifically,
we select a subset of 234 scenes from MVImgNet [54] and
reconstruct them in 3D by optimizing a 3DGS represen-
tation [15], utilizing the approximately 30 images avail-
able for each scene. Although the 3DGS optimization [15]
yielded reasonable results, we found that the method pro-
posed by Zhu et al. [57] produced better outcomes with
fewer floaters and less blurriness, which is why we adopt
their approach to reconstruct the scenes.

Once the 3DGS representation is obtained, we render
7373 stereo pairs by setting up stereo cameras at various
views. We carefully position the cameras around the input

scene to ensure the rendered images do not contain floaters
or blurry content. Together, we use 30982 stereo images
across 458 scenes; 234 from MVStereo and a subset of
224 scenes from NeRFStereo, both encompassing diverse
indoor and outdoor environments. Since our goal is text-
based stereo generation, we also require corresponding text
prompts for each stereo image in our dataset, which we ob-
tain using the BLIP captioning model [19]. Some examples
of stereo images and their corresponding captions from both
NeRFStereo and our MVStereo are shown in Fig. 3.

4.2. Stereo Adaptation

Given a dataset of stereo images and their corresponding
text prompts, {xi

l, x
i
r, c

i}Ni=1, we aim to train a stereo gener-
ator. However, due to the relatively small size of our dataset,
training a diffusion model from scratch is impractical. Even
with a larger dataset, ensuring generalization to diverse text
prompts would be challenging. To address this, we leverage
the strong prior knowledge in a pre-trained diffusion model,
specifically Stable Diffusion [34], and adapt it for the stereo
generation task.

The primary challenge here is that Stable Diffusion is
designed to produce a single RGB image, whereas our ob-
jective is to generate stereo image pairs. Inspired by In-
stant3D [21], we propose stacking our stereo image pairs,
xi
l and xi

r ∈ R256×512×3, vertically to form a single RGB
image, xi ∈ R512×512×3 (see Fig. 2). This stacked repre-
sentation, along with the corresponding text prompts, forms
our training dataset, T = {xi, ci}Ni=1, which we use to fine-
tune Stable Diffusion according to the objective in Eq. 1.
Note that we do not provide camera pose information as
the input to the network. However, since the training data is
mainly composed of stereo images with a large baseline, our
trained model has the ability to produce such stereo pairs.

Fine-tuning Stable Diffusion by directly optimizing its
parameters, θ, can lead to overfitting due to the small size
of our dataset. To address this, we employ Low-Rank Adap-
tation (LoRA) [13], which mitigates overfitting by freezing
the diffusion parameters θ and modulating them through a
trainable layer with significantly fewer parameters. Specif-
ically, each linear layer, initially represented as h = Wx
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Figure 4. Given a stereo image pair, we estimate the stereo dispar-
ity using both images and monocular disparity using only the left
image. The correlation between the two maps will then serve as
our stereo consistency reward function.

with W ∈ Rd×d, is modified to h = Wx + BAx, where
A ∈ Rd×r and B ∈ Rr×d, with r ≪ d. By freezing W and
updating only A and B in each layer of Stable Diffusion,
we adapt the model for stereo generation while preserving
its ability to generalize.

4.3. Fine-Tuning for Consistency Enhancement

Our fine-tuned model, as shown in Fig. 9 (Base), produces
vertically stacked stereo images for unseen text prompts.
However, the generated results exhibit two issues. First,
while the content in the left and right images shifts with
the camera’s perspective, there are often deformations and
inconsistencies between objects in the two views. This is-
sue primarily arises because our initial fine-tuning lacks
a mechanism to enforce consistency between the left and
right images. Second, we observe that after fine-tuning, the
diffusion model generates images that, in some cases, are
not fully consistent with the text prompt.

To address these issues, we propose further fine-tuning
the model to enhance its stereo and prompt consistency us-
ing AlignProp [30]. The main challenge here is designing
an appropriate reward function R that measures the stereo
and prompt consistency of the generated images. To this
end, we propose a reward function consisting of three terms
as follows:

R = αRs + βRp + γRc (3)

where Rs, Rp, and Rc refer to the stereo consistency,
prompt consistency, and convergence rewards, described
below. Moreover, α = 0.25, β = 0.75, and γ = 0.25
define each term’s weight.

Stereo Consistency: Since there is currently no well-
established mechanism for checking the stereo consistency
between generated stereo pairs, we need to design our own
metric. Our key idea is that for stereo images to be con-
sistent, the stereo and monocular disparities should align.
This ensures that the model avoids trivial solutions, such
as duplicating content, where the stereo disparity is zero,
but the monocular disparity still reflects the correct depth.

To achieve this, we estimate the stereo disparity as ds =
Φ(xl, xr) and the monocular disparity as dm = Ψ(xl)
and measure their similarity. Since the monocular disparity
is relative, comparing these two disparities directly using
pixel-wise metrics, such as L2, is not effective. Therefore,
we propose measuring their similarity using Pearson corre-
lation, as follows:

Rs =

∑
p(d

m(p)− d̄m)(ds(p)− d̄s)√∑
p(d

m(p)− d̄m)2
∑

p(d
s(p)− d̄s)2

, (4)

where d̄m and d̄s are the average monocular and stereo dis-
parities over all pixel coordinates p. In our implementation,
we use DepthAnythingV2 [52] to estimate monocular dis-
parity. For stereo disparity, we initially experimented with
CREStereo [20], but found it to be sensitive to imperfec-
tions in the stereo pairs. Therefore, we use SEA-RAFT [47]
to estimate the optical flow between the two images, and
then use the x-coordinate as the disparity. We illustrate our
stereo consistency reward in Fig. 4.

Prompt Consistency: We use the human preference
score v2 [50], which trains a CLIP model [32] on a large
annotated dataset. This score reliably measures the consis-
tency between the text prompt and the generated images,
and we adopt it as our prompt consistency metric, Rp.

Convergence: Stereo images captured with cameras with
parallel optical axis have convergence at infinity, i.e., the
objects at infinite depth will have zero disparity. Through
the finetuning, however, the diffusion model may generate
stereo images with convergence at the middle of the scene,
i.e., objects further away from the convergence will have
negative disparity. To avoid this issue, we introduce the fol-
lowing reward to penalize the negative disparities:

Rc = −∥max(−ds(p), 0)∥1
max(max(−ds), 1)

. (5)

Here, the denominator is a normalization factor that pre-
vents large negative disparities (greater than 1) from causing
a spike in the loss.

5. Results
In this section, we first describe the implementation details.
We then show comparisons against state-of-the-art methods
and demonstrate the impact of various components of our
approach.

5.1. Implementation Details

We implement our method in PyTorch and use the pre-
trained Stable Diffusion v1.5 as our base model. Addition-
ally, we utilize LoRA with rank 4, and inject it into every
U-Net cross-attention layer. In the initial training phase, we
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Figure 5. Qualitative comparison of our approach against StereoDiffusion [46] and 3D Photography [39] on five test prompts. Given a text
prompt, we generate a stereo pair and use the left image as input for the other methods to reconstruct the right image. StereoDiffusion,
which performs warping in the latent space, often distorts objects (top two rows) or fails to position them correctly (bottom three rows).
For example, note that StereoDiffusion does not produce the gap between the mushrooms in the fourth example. 3D Photography struggles
with depth inaccuracies (e.g., thin structures in the top row) and fails to reconstruct occluded areas (bottom four rows). In contrast, our
approach produces consistent, high-quality results with wide baselines.

optimize the model with a cosine learning rate scheduler
starting at 1e-4, employing a batch size of 4 with gradi-
ent accumulation over 4 steps for a total of 4000 iterations,
which took roughly 6 hours on a single A100 GPU. Sub-
sequently, for optimization using consistency rewards, the
model undergoes further fine-tuning for 300 iterations with
a batch size of 100 prompts per step utilizing 4 A100 GPUs
for a day.

5.2. Comparisons

We demonstrate the effectiveness of our approach by pro-
viding comparisons against StereoDiffusion [46] and 3D
Photography [39]. Specifically, in each case, we generate
the stereo images given a text prompt with our approach and
use the left image as the input to the other techniques for re-
constructing the right image. As such, we only compare the
reconstructed right images. 3D Photography reconstruct the
novel image through depth-based warping and inpainting,
while StereoDiffusion, performs the warping in the latent
space of a diffusion model.

Figure 5 shows comparisons against the other ap-
proaches on five test prompts. Since the warping in the

latent domain is not precise, StereoDiffusion either distort
the objects (top two scenes) or is unable to move various
objects to the appropriate location (last three scenes). Simi-
larly, 3D Photography struggles in cases where the depth is
inaccurate (e.g., the thin structure in the top scene) and is
unable to properly reconstruct the occluded areas (bottom
four scenes). In contrast, our approach produces consistent
high-quality results with large baselines.

We further evaluate the consistency of generated results
in Figure 6. Specifically, we use the pair of images gener-
ated by each method as the input to Splatt3R [40] to obtain
the corresponding 3D Gaussian splatting (3DGS) [15] rep-
resentation. We then render the 3DGS representation from a
novel view and compare the renderings. The key idea is that
if the stereo images are consistent, Splatt3R will produce a
high-quality 3DGS representation and thus the rendered im-
ages will be of high quality. As shown in Figure [40], the
novel view images for both StereoDiffusion and 3D Photog-
raphy contain distracting artifacts. In contrast, the rendering
by our approach has clear object boundaries, demonstrating
the consistency of our generated left and right images.
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Figure 6. Evaluation of stereo consistency using Splatt3R [40]. Given the text prompt: “There are glowing mushrooms lighting up the
depths of an underground forest,” we generate a stereo pair with each method and use it as input to Splatt3R to obtain a 3D Gaussian splat-
ting (3DGS)[15] representation. The 3DGS model is then rendered from a novel viewpoint. StereoDiffusion[46] and 3D Photography [39]
produce stereo images with inconsistencies, leading to artifacts in the rendered view. In contrast, our approach generates more consistent
stereo pairs, resulting in a high-quality 3DGS representation with clear object boundaries.
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Figure 7. We demonstrate the results through various stages of the training process. The numbers in the first and third rows correspond
to the prompt alignment score and stereo consistency score, respectively. As seen, both stereo consistency and prompt alignment exhibit
improvements throughout the reward optimization process.

5.3. Analysis

We begin by showing the progressive improvement of
stereo consistency and prompt alignment with the optimiza-
tion of our consistency rewards (Eq. 3) in Fig. 7. The values
presented in the first and third rows represent the prompt
and stereo consistency scores, respectively. Each column
is obtained by generating the results of the network after
certain number of reward queries. Here the reward query
refers to the number of times the reward function is evalu-
ated during the fine-tuning process, e.g., one iteration with
a batch size of 100 leads to 100 reward queries. As seen
both the prompt and stereo consistency of the results im-
prove during the optimization (despite some fluctuations).
Particularly, the stereo depth maps (third row) improve sig-
nificantly through the fine-tuning process.

We further evaluate how the prompt and stereo consis-
tency rewards evolve during the optimization for both train-

ing and test prompts in Figure 8. Specifically, we perform
the evaluation on 100 training prompts, drawn from the
training dataset, and 100 test prompts, generated by Chat-
GPT 4o. We ensure that the test prompts are substantially
different from the training prompts. As shown in Fig. 8, dur-
ing the reward optimization process, both the mean values
of the prompt and stereo consistency rewards exhibit a pro-
gressive increase, while their standard deviations decrease.
These trends indicate an enhancement in the model’s capa-
bility to generate images with improved prompt alignment
and stereo consistency. Additionally, in all plots, the train-
ing and testing results follow similar trajectories, suggesting
that optimizing for consistency objectives does not compro-
mise the model’s generalization ability.

Finally, we conduct ablation studies to evaluate the im-
pact of various components of our system both numeri-
cally (Table 1) and visually (Figure 9). As seen, the base
model (without consistency tuning) produces results with
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Figure 8. We show the rewards averaged over 100 training and
test prompts during the optimization process. The mean values of
both prompt and stereo consistency rewards increase, while their
standard deviations decrease, during the reward optimization pro-
cess. These trends suggest an improvement in the model’s ability
to generate images with enhanced prompt alignment and stereo
consistency. Furthermore, across all plots, both training and test-
ing results demonstrate similar trends, indicating that optimizing
for consistency objectives does not adversely affect the model’s
generalization capabilities.

Table 1. We quantitatively evaluate the impact of various compo-
nents of our system in terms of the stereo and prompt consistency
scores.

Condition Stereo Score Prompt Score
Base 0.414 ± 0.327 0.237 ± 0.012
Base + Stereo 0.985 ± 0.012 0.205 ± 0.010
Base + Stereo + Prompt, 10 prompts 0.877 ± 0.192 0.258 ± 0.010
Base + Stereo + Prompt, 100 prompts 0.937 ± 0.098 0.254 ± 0.010
Base + Stereo + Prompt, 750 prompts (Ours) 0.949 ± 0.078 0.264 ± 0.011
Base + Stereo + Prompt, 2000 prompts 0.940 ± 0.091 0.263 ± 0.011

poor stereo consistency and prompt alignment. Optimizing
with only the stereo consistency reward (Base + Stereo) im-
proves stereo consistency but significantly reduces prompt
alignment. Optimizing with both stereo and prompt con-
sistency rewards improves both scores. Additionally, in-
creasing the training prompts to 750 consistently enhances
the results, after which the improvement stabilizes. Note
that compared to the variant without prompt consistency
(Base + Stereo), our method produces results with slightly
lower stereo scores. However, as shown in Fig. 9, our ap-
proach produces stereo images with the best trade off be-
tween stereo and prompt consistency.

6. Conclusion, Limitations, and Future Work
We have presented a novel method for generating wide-
baseline stereo images by adapting a pre-trained diffusion
model to this task. Specifically, we first fine-tune a Stable
Diffusion model on a stereo dataset to produce vertically

Left View

Inputs StereoDiffusion 3D Photography Reconstruction (Ours)

Right View

Left

Inputs 
(Ours)

Reconstructions 
(Ours)

Right 

Inputs 
(StereoDiffusion)

Reconstructions 
(StereoDiffusion)

Inputs 
(3DPhotography)

Reconstructions 
(3DPhotography)

Base + 
Stereo

Base + 
Stereo + 

Prompt, 10 
prompts

Base + 
Stereo + 

Prompt, 100 
prompts

Base + 
Stereo + 

Prompt, 750 
prompts

Base

Base + 
Stereo + 

Prompt, 2000 
prompts

Figure 9. We show the impact of different component of our sys-
tem visually. The test prompt is: “There is a serene sunrise over a
calm lake, promising a day filled with wonder.”

stacked left and right images. Moreover, to improve stereo
consistency and prompt alignment, we propose specific re-
ward functions used to further tune the model. In particular,
we introduce a stereo consistency reward that calculates the
similarity of monocular and stereo disparities using Pearson
correlation. Through experimental results, we demonstrate
that our approach outperforms existing methods.

Despite producing high-quality results, our approach has
a few limitations. For example, it currently does not provide
a mechanism to control the baseline of the generated stereo
images. In the future, it would be interesting to investigate
a way to use the baseline as an input to the diffusion process
to enhance controllability. Additionally, our approach can
generate stereo images only from a text prompt and cannot
reconstruct stereo images from a single image. One poten-
tial solution is to invert the image into our diffusion process
to reconstruct the other view. We leave the investigation of
this strategy to future work. Finally, we observed that the
captions generated by the BLIP model are short and could
sometimes be inaccurate. In the future, it would be interest-
ing to utilize more descriptive image captioning approaches
such as LLaVA [23], combined with human verification of
the captions, as they have been shown to improve the image
generation quality [36].
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Zhou, Sai Bi, Sören Pirk, and Arie E. Kaufman. Carve3d:
Improving multi-view reconstruction consistency for dif-
fusion models with rl finetuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6369–6379, 2024. 2

[52] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth any-
thing v2, 2024. 5

[53] Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent,
Michael Rubinstein, William T Freeman, Forrester Cole, De-
qing Sun, Noah Snavely, Jiajun Wu, et al. Wonderjourney:
Going from anywhere to everywhere. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6658–6667, 2024. 2



[54] Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu,
Chongjie Ye, Yushuang Wu, Zizheng Yan, Chenming Zhu,
Zhangyang Xiong, Tianyou Liang, et al. Mvimgnet: A
large-scale dataset of multi-view images. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9150–9161, 2023. 2, 4

[55] Jingbo Zhang, Xiaoyu Li, Ziyu Wan, Can Wang, and Jing
Liao. Text2nerf: Text-driven 3d scene generation with neu-
ral radiance fields. IEEE Transactions on Visualization and
Computer Graphics, 2024. 2

[56] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817, 2018. 2

[57] Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang.
Fsgs: Real-time few-shot view synthesis using gaussian
splatting. In European Conference on Computer Vision,
pages 145–163. Springer, 2024. 4


	. Introduction
	. Related Work
	. 3D Generation
	. Single-Image Novel View Synthesis
	. Tuning Diffusion with Rewards

	. Background
	. Diffusion Models
	. AlignProp

	. Methodology
	. Dataset Preparation
	. Stereo Adaptation
	. Fine-Tuning for Consistency Enhancement

	. Results
	. Implementation Details
	. Comparisons
	. Analysis

	. Conclusion, Limitations, and Future Work

