CroCoDL: Cross-device Collaborative Dataset for Localization

Hermann Blum®?, Alessandro Mercurio!, Joshua O’Reilly!, Tim Engelbracht®,
Mihai Dusmanu?, Marc Pollefeys'?, Zuria Bauer!
'ETH Zurich 2Microsoft *Lamarr Institute / Uni Bonn

blumh@uni-bonn.de & mihaidusmanu@microsoft.com & {pomarc, zbauer}@ethz.ch

Abstract

Accurate localization plays a pivotal role in the auton-
omy of systems operating in unfamiliar environments,
particularly when interaction with humans is expected.
High-accuracy visual localization systems encompass
various components, such as image retrievers, feature
extractors, matchers, reconstruction and pose estimation
methods. This complexity translates to the necessity
of robust evaluation settings and pipelines. However,
existing datasets and benchmarks primarily focus on
single-agent scenarios, overlooking the critical issue of
cross-device localization. Different agents with differ-
ent sensors will show their own specific strengths and
weaknesses, and the data they have available varies
substantially. This work addresses this gap by enhanc-
ing an existing augmented reality visual localization
benchmark with data from legged robots, and evaluat-
ing human-robot, cross-device mapping and localization.
Our contributions extend beyond device diversity and in-
clude high environment variability, spanning ten distinct
locations ranging from disaster sites to art exhibitions.
Each scene in our dataset features recordings from robot
agents, hand-held and head-mounted devices, and high-
accuracy ground truth LiDAR scanners, resulting in
a comprehensive multi-agent dataset and benchmark.
This work represents a significant advancement in the
field of visual localization benchmarking, with key in-
sights into the performance of cross-device localization
methods across diverse settings.

1. Introduction

In recent years, a range of mixed-reality (MR) headsets
appeared on the market, bringing them for the first time
into private and public spaces with diverse applications,
such as assisting in frontline activities, boosting the
productivity of office workers, augmented / virtual tours,
and games. Many of the foreseen use cases of these
devices involve multiple users observing and interacting
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Figure 1. CroCoDL: the first dataset to contain sensor
recordings from real-world robots, phones, and MR headsets,
covering a total of 10 challenging locations to benchmark
cross-device and human-robot visual registration.

with the same virtual hologram through different MR
interfaces. For the task of human-robot collaboration,
MR unleashes the potential of visualizing the robot
sensor readings, as well as planning its actions ‘at a
glance’. The key technological challenge to interlace
virtual or augmented reality experiences into shared
digital spaces is to accurately localize all kinds of devices
from different viewpoints with respect to each other.
Localizing multiple devices with respect to a shared
reference is a necessary condition for rendering shared
content at the same location.

In this work, we investigate the problem of visual
co-localization between pairs of devices. In particular,
we are interested in device pairs that differ in their
typical viewpoint, as well as their motion patterns and
sensor configurations. Our main focus lies on mixed-
reality headsets, hand-held smartphones, and legged
robots. Our findings suggest that, while visual retrieval
and registration have made considerable progress on



Table 1. Commonly used datasets for visual localization and SLAM. Legend: M inside, [] outside environment;

% Structural changes due to moving people, § long-term changes due to displaced furniture,

weather, ' P day-night, FL

construction work; Trajectory motion from sensors mounted on & ground vehicle, ¢ legged robot, ¥ drone, && car,
hand-held, ©2 head-mounted, ‘syn. synthetic. (noted with *: at most 2 devices are recorded in the same location; [%5]: not
aligned, due to safety / permission reasons - we could only capture drone footage in 8/10 locations)

Dataset Motion Env. Locations Changes Sensors GT pose accuracy Seqs.
KITTI [7] & (] 1 RGB, LiDAR, IMU <10cm (RTKGPS) 22
TUM RGBD [17] S | 2 RGB-D, IMU 1mm (mocap) 80
EUROC [2] = [} 2 RGB, IMU 1mm (mocap) 11
3 n ;
, LED RGB, LiDAR, <10cm (GPS + IMU +
NCLT [3] ™ =0 ! IMU, GNSS LiDAR) 7
_ 2 RGB, event camera, lcm (total station +
UZH-FPV [5] = ad 2 IMU VLBA) 28
ETH3D SLAM [15] [ | 1 RGB, depth, IMU 1mm (mocap) 96
OpenLoris-Scene [16] LN [ | 5 RGB-D, IMU, <10cm (2D LiDAR) 22
wheel odom.
TartanAir [18] syn. ad 30 RGB perfect (synthetic) 30
UMA VI [21] P=Y ad 2 RGB, IMU (visual tags) 32
Naver Labs [11] Y n 5 RGB, LiDAR, MU <10cm (LIDAR SLAM )
and SfM)
HILTI SLAM [9] ] 8 RGB, LiDAR, IMU <5mm (total station) 12
Graco [20] L (] 1 RGB, LiDAR, GPS, IMU ~lcm (GNSS) 14
RGB, event cameras
: o * ) ) -
FusionPortable [10, 19] 2el CSaga* ®[O 9 LiDAR, IMU, GPS lecm (GNSS RTK) 41
: : .
’ ) = . N ) RGB, LiDAR, <10cm (LiDAR
et ¢ T B m e MU WE/BT 1 PGO+RGOBA)
CroCoDL =e¢rs] mO 10 P ) RGB, LiDAR, ~10cm (LiDAR 500

depth, IMU, WiFi/BT + PGO + PGO-BA)  +800

datasets that are mostly recorded with a single type of

device, visual localization of one against another can

be very challenging even for state-of-the-art methods.

To investigate visual co-localization, we extend the
landscape of visual localization data with a consider-
ably larger and more diverse dataset and benchmark
entitled “CroCoDL” illustrated in Figure 1. CroCoDL
is the first dataset to contain sensor recordings from
both robots and mixed-reality devices, and spans more
real-world environments than any other existing cross-
device visual localization dataset. In summary, our
contributions are:

o The (to the best of our knowledge) largest real-world
cross-device visual localization dataset, focusing on
diverse capture setups and environments.

e A novel benchmark on cross-device visual registration
that shows considerable limitations of current state-
of-the-art methods.

o Integration of ROS-based robotic sensor streams into
LaMAR’s pseudo-GT pipeline [14]. We will release
the code for the data pre-processing and the required
changes to the pipeline.

2. Related Work

We present an overview of the most relevant exist-
ing datasets used to evaluate visual localization and
SLAM systems in Table 1. Most existing datasets focus
on a single device type for data capture. The other
datasets always combine at most two different devices
per location: TUM RGBD [17] records handheld &
ground robot, UMA VT [21] handheld and a few car

sequences, Graco [20] ground robot & drone. In Fusion-
Portable [10, 19] 3 sequences overlap between handheld
and a legged robot, one sequence legged robot with
ground robot, and one sequence ground robot with
car. Out of the four, LaMAR [14] is the only dataset
that captures longterm, structural, day and night, and
other changes. CroCoDL builds upon the efforts of
LaMAR [14] by adding data recorded by a legged robot
and a drone, and expanding the hand-held and head-
mounted data from 3 to 10 locations. To the best of
our knowledge, we introduce the largest cross-device
real-world visual localization dataset, focusing on di-
verse devices and environments. Therefore, CroCoDL
serves a different purpose than, e.g., EUROC [2] or
HILTT SLAM [9], where more accurate ground truth
through motion-capture or line-of-sight tracking limits
the variability of sensors, motion patterns, scale, and
locations.

3. Dataset

The dataset consists of 10 distinct locations, featuring
over 800 new sequences, totaling more than 100 hours
of original raw recording time with 5 different devices.

3.1. Locations

The first locations are recordings during an event for

developing advanced robotics capabilities in hazardous

environments (ARCHE [1]), held at a training village

designed to safely simulate realistic disaster scenarios.

1. ARCHE D2: The intact basement of a semi-
collapsed building.
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Figure 2. New locations of the CroCoDL dataset. Fach location has high-quality meshes, obtained from LiDAR, which
are registered with numerous phone, AR headset, and robotic sequences. These locations were chosen to complement the

existing locations in LaMAR in terms of diversity.

Table 2. Sensor specifications. The different platforms in
CroCoDL with their recorded sensors. *: GPS is only avai-
lable outdoors, iOS only exposes anonymized BT GUIDs.

OrS Cameras
W Raw: Dev. - wiri Gps
Platf. # FOV RGB/GS Depth  Freq. IMU Odom.

Spot 4 103° vGA 15sHz X vV X X X
Azure Kinect 1 65° VGA 15Hz v X X X X

ZED2i 2 T0° m 15Hz vV X X X X
DJI Mini 4Pro 1 72° X 30Hz X X X X Vv*
NavVis VLX 4 90° EBEBI (PC) 13m X v VvV Vv X
HoloLens2 4 83° QVGA 30/5Hz vV V VX
iPad/iPhone 1 64° FHD 10Hz Vv V/ V* X V*

2. ARCHE B3: The intact basement, bunker, and
collapsed second story of a semi-collapsed building.

3. ARCHE B5: Ruins exposed to the open sky.

4. ARCHE Grande Plaza: An open plaza in front
of a freight train, with an exhibition set up in tents.

The next locations present visually unique challenges

typically absent from SLAM datasets.

5. Hydrology Lab: An ETH experimentation hall
and its underground facilities where tests on scaled
models of water channels and dams are conducted.

6. Succulent Plant Collection: A botanical museum
in Ziirich featuring connected greenhouses and a
garden with a vast collection of succulents and cacti.

7. Design Museum Collection: A poster storage
room, basement, and staircases of an on-campus
museum at Ziirich University of the Arts.

Lastly, we enhance the existing LaMAR scenes with

data collected using the Spot robot:

8. HGE: The main building of ETH Ziirich.

9. CAB: The computer science building with offices
and classrooms at ETH Ziirich.

10. LIN: Part of the Ziirich old town district.

3.2. Recorded sensors

The AR component of the dataset was recorded using a
combination of i0S (iPad Pro and iPhone 13 mini) and
HoloLens 2 devices; more details about their capturing
application and sensors can be found in [14]. The robot
system used for data capture is summarized in Table 2
and consists of a Boston Dynamics Spot quadruped with
two additional front-facing camera systems, an Azure

Kinect Developer Kit and StereoLabs ZED2i. We also
recorded with a DJI Mini 4 Pro drone which has an RGB
camera with a gimbal for image stabilization purposes.
However, the alignment of ground-truth pose data for
the drone recordings is still under active development.

3.3. Ground-Truth Pipeline

While iOS and HoloLens 2 data pre-processing is im-
plemented by LaMAR [14], Spot data pre-processing
follows its own pipeline. First, rosbags are converted
to the Capture format [12]. Extrinsic parameters are
corrected using a calibration recording on-site, cam-
eras which are recorded sideways or upside down are
rotated upright to account for rotation-variant local
features in the ground truth pipeline, sensor readings
are sorted chronologically, and duplicates are removed.
The ground truth pipeline requires chronologically syn-
chronized sensor readings, which is achieved by creating
virtual rigs. For a given set of temporally adjacent
sensor readings, their timestamps are averaged, and the
robot’s pose at this averaged timestamp is interpolated.
For each sensor, the robot’s displacement between the
averaged timestamp and the sensor reading’s actual
timestamp is determined and incorporated into the
transformation between that sensor and a selected rig
base-frame. This process results in sensor measure-
ments that share a common timestamp while adjusting
their positions relative to the rig origin to account for
their individual capture times. The precision of this is
limited by the robot’s odometry rate of 50Hz.

Pre-processed data is fed into LaMAR [14] and fol-
lows their pipeline to generate accurate ground truth
poses for all sessions. As shown in Figure 1, the footage
from Spot is successfully aligned to the NavVis mesh,
achieving comparable overall accuracy with respect to
HoloLens and iOS devices results.

4. Evaluation

We focus on the evaluation of five of the new locations,
which cover many of the challenging conditions present.
ARCHE D2, Hydrology, and Design Museum are indoor
locations with different features: The first is sparsely
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Figure 3. SuperPoint local features with LightGlue matcher combined with varying image retrieval methods.
Aggregated results of the five examined locations, normalized on the number of queries per device type. Percentage of correct
pose estimation queries with rotation-translation thresholds of 5 degrees, 0.5 meters respectively. HL is HoloLens 2, NV is
NavVis. Overlap uses the ground-truth to simulate a perfect retrieval (isolating feature matching).

illuminated, the last includes many repetitive hallways.
The Succulent Plant Collection is both indoor and out-
door, with some occlusions from heavy foliage. ARCHE
Grande Place features large structural changes as a
series of large tents were set up and taken down.

Methodology. Per location and per device, a STM
model is created from each mapping set using [13]. Im-
age retrieval followed by matching and pose estimation
is then performed using each query set. In order to
evaluate cross-device localization, the query set and
mapping set belong to different devices, with all com-
binations evaluated. We start by retrieving top K
mapping images for each query image using different
retrieval methods. For devices with rigs (e.g., Spot,
HoloLens), we retrieve K images for each camera in the
rig. The query images are then matched to the retrieved
ones to yield a set of tentative 2D-2D matches that are
lifted to 2D-3D matches using the sparse SfM model.
These matches are then provided to LO-RANSAC [4, 6]
which robustly estimates the final pose using P3P [6]
for single images or GP3P [8] for rigs. The rotation and
translation recall correctness thresholds have been set
to 5 degrees and 0.5 meters respectively due to limited
ground truth accuracy of Spot poses in particular.

Results with SOTA methods. We report the ag-
gregated results normalized by the number of queries
per location in Figure 3.

Is cross-device localization harder than same-
device localization? Across all retrieval methods,
recall tends to be greatest when the same device is used
for both mapping and querying, demonstrating the
impact of heterogeneous sensor specifications such as
field-of-view and viewpoint height on performance. We
observe higher recall when the multi-camera systems,
HoloLens 2 and Spot, are used as queries. Spot maps
with iOS queries consistently demonstrate the lowest
recall, demonstrating the limits of SOTA methods.

Is retrieval or matching the bottleneck? Figure 3
suggests that for many device pairs, retrieving images
of a different device looking at the same location is
something SOTA methods struggle with. If retrieval is

Table 3. Comparison of SOTA methods for retrieval,
extraction, and matching. Recall of localization com-
ponent combinations in the hardest tested scenario: iOS
query images in a Spot-built map. Results from Hydrology
Lab location. (noted with *: unlike MASt3R, SuperPoint +
LightGlue uses multi-view triangulation for the map)

Image Feature Feature Recall
Retrieval Extraction Matching (5 deg, 0.5 m)
APGeM 0.36
NetVLAD 0.42

Fusion . . 0.43
OpenlBL SuperPoint  LightGlue 0.49
CosPlace 0.32
SALAD 0.54

NetVLAD SIFT LightGlue 0.25
NetVLAD SuperPoint  LightGlue 0.42
NetVLAD SuperPoint  SuperGlue 0.43
NetVLAD LoFTR 0.40
Overlap (Top 10) . .
(upper bound) SuperPoint  LightGlue 0.67
Overlap (Top 1)  SuperPoint  LightGlue 0.57*
Overlap (Top 1) MASt3R 0.34

skipped by using ground truth overlap, the aggregated
recall improves for many device pairs, but localizing
other devices in robot maps still has low recall. Table 3
investigates the pair of iOS queries in Spot maps further.
We can conclude that cross-device image retrieval is
overall more limiting right now, but even with perfect
retrieval, there is a large potential for improvement of
feature matching for relative pose estimation between
robots and mixed-reality devices.

5. Conclusion & Outlook

We present a novel benchmark for cross-device visual
registration that shows the considerable limitations of
current state-of-the-art methods for both image retrieval
and feature extraction and matching when using dif-
ferent devices for mapping and localization. CroCoDL
presents a solid foundation on which to explore cross-
device localization in more depth, and we intend to
further extend both the dataset and benchmark.
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